
Dr. Debashis Saha
Assistant Professor
- Room No: 36, SBS
- +91-6747135436
- dsaha@iitbbs.ac.in
- Department of Physics
Research Interests:
Quantum Information and Computation, Foundations of Quantum Theory.
- Biosketch
- Teaching
- Mentoring
- Honours & Awards
- Projects
- Publications
- Conferences
- Professional Experience
- Others
Academic Qualification
Degree | Year | Subject | Institution |
Integrated BS-MS | 2009 – 2014 | Physics | IISER Kolkata |
Ph.D. | 2014 – 2018 | Quantum Information | University of Gdansk, Poland |
Post-Doctoral Experience
Position | Time period | Institution |
Post-doctoral Fellow | Aug 2018 – 2020 | Center for Theoretical Physics, Warsaw, Poland |
Post-doctoral Fellow (NPDF) | 2021 – July 2022 | S N Bose National Centre for Basic Sciences, Kolkata |
Work Experience
Position | Time period | Institution |
Assistant Professor | Aug 2022 – June 2025 | IISER Thiruvananthapuram |
Assistant Professor | June 2021 – ongoing | IIT Bhubaneswar |
- Mathematical Methods for Physics (Engineering Physics)
- Physics Laboratory (MSc Physics)
Name of Award/Fellowship | Awarding Agency | Year |
INSPIRE Scholarship | DST, India | 2009 |
‘National Initiative on Undergraduate Science’ (NIUS) fellowship | Homi Bhabha Centre for Science Education, India | 2014 |
NET-JRF, CSIR (AIR 41) | DST, India | Dec 2013 (before completing BS-MS) |
Fellowship for ‘Interdisciplinary Doctoral Studies in Mathematical Modelling’ | University of Gdansk, Poland | 2014 |
National Postdoctoral Fellowship | SERB, India | 2020 |
Research Projects as Principal Investigator (PI)
Name | Title of the Project | Time period |
PRELUDIUM, funded by National Science Centre (NCN), Poland. | Quantum Information processing with contextual resources | Aug 2017 – Aug 2020 |
NPDF, funded by SERB, India. | Self-testing of quantum devices and device-independent information processing | Mar 2021 – Aug 2022 |
STARS, funded by IISc, India. | Quantum information processing from distinguishability of physical processes | June 2024 – June 2027 (on-going) |
Publications (in reverse chronological order)
- D. Saha and A. Cabello,
‘Self-Testing Supersinglets with Perfect Quantum Strategies’,
Phys. Rev. A 112, 012606 (2025). arXiv:2501.00409 - S. Manna, S. Suresh, M. S. Kachhawaha, and D. Saha,
‘Single-Shot Distinguishability and Antidistinguishability of Quantum Measurements’,
Phys. Rev. A 111, 022221 (2025). arXiv:2410.10632 - S. Manna, A. Chaturvedi, and D. Saha,
‘Unbounded quantum advantage in communication complexity measured by distinguishability’,
Phys. Rev. Research 6, 043269 (2024). arXiv: 2401.12903 - P. P. Nath, D. Saha, D. Home, and U. Sinha,
‘Single-system-based generation of certified randomness using Leggett-Garg inequality’,
Phys. Rev. Lett. 133, 020802 (2024). arXiv: 2402.03712 - A. Mitra, D. Saha, S. Bhattacharya, and A. S. Majumdar,
‘Relating Completely Positive divisibility of dynamical maps with compatibility of channels’,
Phys. Rev. A 109, 062213 (2024). arXiv: 2309.10806 - Z.-P. Xu, D. Saha, K. Bharti, and A. Cabello,
‘Certifying Sets of Quantum Observables with Any Full-Rank State’,
Phys. Rev. Lett. 132, 140201 (2024). arXiv: 2309.05735 - R. Santos, D. Saha, F. Baccari, and R. Augusiak,
‘Scalable Bell inequalities for graph states of arbitrary prime local dimension and self-testing’,
New Journal of Physics 25, 063018 (2023). arXiv:2212.07133 - D. Saha, D. Das, A. K. Das, B. Bhattacharya, and A. S. Majumdar,
‘Measurement incompatibility and quantum advantage in communication’,
Phys. Rev. A 107, 062210 (2023). arXiv: 2209.14582 - S. Sarkar, J. J. Borkala, C. Jebarathinam, O. Makuta, D. Saha, and R. Augusiak,
‘Self-testing of any pure entangled state with minimal number of measurements and optimal randomness certification in one-sided device-independent scenario’,
Phys. Rev. Applied 19, 034038 (2023). arXiv: 2110.15176 - S. Sarkar and D. Saha,
‘Demonstration of quantum correlations that are incompatible with absoluteness of measurement‘,
Phys. Rev. A 107, 022226 (2023). arXiv: 2107.08447 - S. Gupta, D. Saha, Z-P Xu, A. Cabello, and A. S. Majumdar,
‘Quantum contextuality provides communication complexity advantage‘,
Phys. Rev. Lett. 130, 080802 (2023). arXiv: 2205.03308 - S. Nandi, D. Saha, D. Home, and A. S. Majumdar,
‘Wigner approach enabled detection of multipartite nonlocality using all different bipartitions‘,
Phys. Rev. A 106, 062203 (2022). arXiv: 2202.11475 - S. Sarkar, D. Saha, and R. Augusiak,
‘Certification of incompatible measurements using quantum steering‘,
Phys. Rev. A (Letters) 106, 040402 (2022). arXiv: 2107.02937 - D. Das, A. G. Maity, D. Saha, and A. S. Majumdar,
‘Robust certification of arbitrary outcome quantum measurements from temporal correlations‘,
Quantum 6, 716 (2022). arXiv: 2110.01041 [quant-ph]. - K. Joarder, D. Saha, D. Home, and U. Sinha,
‘Loophole free interferometric test of macrorealism using heralded single photons‘,
PRX Quantum 3, 010307 (2022). arXiv: 2105.11881 - S. Sarkar, D. Saha, J. Kaniewski, and R. Augusiak,
‘Self-testing quantum systems of arbitrary local dimension with minimal number of measurements‘,
npj Quantum Information 7, 151 (2021). arXiv:1909.12722 - R. Salazar, M. Kamon, D. Goyeneche, K. Horodecki, D. Saha, R. Ramanathan, P. Horodecki,
‘No-go theorem for device-independent security in relativistic causal theories‘,
Phys. Rev. Research 3, 033146 (2021). arXiv:1712.01030 - C. Datta, T. Biswas, D. Saha, and R. Augusiak,
‘Perfect discrimination of quantum measurements using entangled systems‘,
New Journal of Physics 23, 043021 (2021). arXiv:2012.07069 - A. Chaturvedi, and D. Saha,
‘Quantum prescriptions are more ontologically distinct than they are operationally distinguishable‘,
Quantum 4, 345 (2020). arXiv:1909.07293 - A. Hameedi, B. Marques, P. Mironowicz, D. Saha, M. Pawlowski, and M. Bourennane,
‘Experimental test of nonclassicality with arbitrarily low detection efficiency‘,
Phys. Rev. A 102, 032621 (2020). arXiv:1511.06179 - D. Saha, R. Santos, and R. Augusiak,
‘Sum-of-squares decompositions for a family of noncontextuality inequalities and self-testing of quantum devices‘,
Quantum 4, 302 (2020). arXiv:2002.12216 - D. Saha, M. Oszmaniec, L. Czekaj, M. Horodecki, and R. Horodecki,
‘Operational foundations for complementarity and uncertainty relations‘,
Phys. Rev. A 101, 052104 (2020). arXiv:1809.03475 - D. Saha, and J. J. Borkala,
‘Multiparty quantum random access codes‘,
Europhysics Letters 128, 30005 (2020). arXiv:1905.05668 - D. Saha, P. Horodecki, and M. Pawlowski,
‘State-independent contextuality advances one-way communication’,
New Journal of Physics 21, 093057 (2019). arXiv:1708.04751 - D. Saha, and A. Chaturvedi,
‘Preparation contextuality as an essential feature underlying quantum communication advantage’,
Phys. Rev. A 100, 022108 (2019). arXiv:1802.07215 - M. Czechlewski, D. Saha, A. Tavakoli, and M. Pawlowski,
‘Device-independent witness of arbitrary-dimensional quantum systems employing binary-outcome measurements‘,
Phys. Rev. A 98, 062305 (2018). arXiv:1803.05245 - A. Hameedi, D. Saha, P. Mironowicz, M. Pawlowski, and M. Bourennane,
‘Complementarity between entanglement-assisted and quantum distributed random access code‘,
Phys. Rev. A 95, 052345 (2017). arXiv:1701.08713 - D. Saha, and R. Ramanathan,
‘Activation of monogamy in non-locality using local contextuality‘,
Phys. Rev. A (R) 95, 030104 (2017). arXiv:1606.04021 - Z.P. Xu, D. Saha, H.Y. Su, M. Pawłowski, and J.L. Chen,
‘Reformulating Noncontextuality Inequalities in an Operational Approach‘,
Phys. Rev. A 94, 062103 (2016). arXiv:1509.06027 - D. Saha, A. Cabello, S. K. Choudhary, and M. Pawlowski,
‘Quantum nonlocality via local contextuality with qubit-qubit entanglement‘,
Phys. Rev. A 93, 042123 (2016). arXiv:1507.08480 - D. Saha, and M. Pawlowski,
‘Structure of quantum and broadcasting nonlocal correlations’,
Phys. Rev. A 92, 062129 (2015). arXiv:1504.05019 - D. Saha, S. Mal, P. K. Panigrahi, and D. Home,
‘Wigner’s form of the Leggett-Garg inequality, No-Signalling in Time and Unsharp Measurement‘,
Phys. Rev. A 91, 032117 (2015). arXiv:1409.1132 - D. Home, D. Saha, and S. Das,
‘Multipartite Quantum Nonlocality by Generalizing Wigner’s Argument‘,
Phys. Rev. A 91, 012102 (2015). arXiv:1410.7936 - N. Vyas, D. Saha, and P. K. Panigrahi,
‘Rooted-tree network for optimal non-local gate implementation‘,
Quant. Inf. Proc. 15, 3855 (2016). arXiv:1506.08411 - D. Saha, S. Nandan and P. K. Panigrahi,
‘Local implementations of non-local quantum gates in linear entangled channel‘,
J. Quant. Info. Sci. 4, p 97-103 (2014). arXiv:1206.6323 - D. Saha, and P. K. Panigrahi,
‘N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel‘,
Quant. Inf. Proc. 11, p 615-628 (2012). arXiv:1105.4160
Preprints (under communication)
- S. Ray, A. Chaturvedi, and D. Saha.
Maximally ψ-epistemic models cannot explain gambling with two qubits.
arXiv:2509.10437 [quant-ph]. https://arxiv.org/abs/2509.10437 - S. Manna, S. Suresh, A. D. Bhowmik, and D. Saha.
Global vs. Local Discrimination of Locally Implementable Multipartite Unitaries.
arXiv:2509.10430 [quant-ph]. https://arxiv.org/abs/2509.10430 - B. Bhaumik, S. Ray, D. Saha.
Communication scenario enables robust self-testing of n-party Greenberger-Horne-Zeilinger basis measurements.
arXiv:2508.21178 [quant-ph]. https://arxiv.org/abs/2508.21178 - A. Pandit, S. Hazra, S. Manna, A. Chaturvedi, and D. Saha.
Limits of Classical correlations and Quantum advantages under (Anti-)Distinguishability constraints in Multipartite Communication.
arXiv:2506.07699 [quant-ph]. https://arxiv.org/abs/2506.07699 - S. Manna, A. D. Bhowmik, and D. Saha.
Maximally entangled states are not always useful for single-shot distinguishability of unitaries.
arXiv:2504.14499 [quant-ph]. https://arxiv.org/abs/2504.14499 - S. Hazra, D. Saha, A. Chaturvedi, S. Bera, and A. S. Majumdar.
Optimal demonstration of generalized quantum contextuality.
arXiv:2406.09111 [quant-ph]. https://arxiv.org/abs/2406.09111 - S. Ray, V R, and D. Saha,
No epistemic model can explain anti-distinguishability of quantum mixed preparations.
arXiv:2401.17980 [quant-ph]. https://arxiv.org/abs/2401.17980 - A. K. Sunilkumar, A. Shaji, and D. Saha,
Learning non-ideal genuine network nonlocality using causally inferred Bayesian neural network algorithms.
arXiv:2501.08079 [quant-ph]. https://arxiv.org/abs/2501.08079
In the Media
On the Research article ‘Single-system-based generation of certified randomness using Leggett-Garg inequality’, Phys. Rev. Lett. 133, 020802 (2024)
On the Research article ‘‘Quantum contextuality provides communication complexity advantage’, Phys. Rev. Lett. 130, 080802 (2023).
On the Research article ‘Loophole free interferometric test of macrorealism using heralded single photons’, PRX Quantum 3, 010307 (2022).