School of Basic Sciences

Dr. Debashis Saha

Assistant Professor
IRINS Profile
Brief Resume
Personal Website
Research Interests:
Quantum Information and Computation, Foundations of Quantum Theory.

 

Academic Qualification

  Degree           Year Subject Institution
Integrated BS-MS 2009 – 2014 Physics IISER Kolkata
Ph.D. 2014 – 2018 Quantum Information University of Gdansk, Poland

Post-Doctoral Experience

Position Time period Institution
Post-doctoral Fellow Aug 2018 – 2020 Center for Theoretical Physics, Warsaw, Poland
Post-doctoral Fellow (NPDF) 2021 – July 2022 S N Bose National Centre for Basic Sciences, Kolkata

Work Experience 

Position Time period Institution
Assistant Professor Aug 2022 – June 2025 IISER Thiruvananthapuram
Assistant Professor June 2021 – ongoing IIT Bhubaneswar

 

  1. Mathematical Methods for Physics (Engineering Physics)
  2. Physics Laboratory (MSc Physics)

 

Name of Award/Fellowship Awarding Agency Year
INSPIRE Scholarship DST, India 2009
‘National Initiative on Undergraduate Science’ (NIUS) fellowship  Homi Bhabha Centre for Science Education, India 2014
NET-JRF, CSIR (AIR 41) DST, India Dec 2013 (before completing BS-MS)
Fellowship for ‘Interdisciplinary Doctoral Studies in Mathematical Modelling’ University of Gdansk, Poland 2014
National Postdoctoral Fellowship SERB, India 2020

Research Projects as Principal Investigator (PI)

Name Title of the Project Time period
PRELUDIUM, funded by National Science Centre (NCN), Poland. Quantum Information processing with contextual resources Aug 2017 – Aug 2020
NPDF, funded by SERB, India.  Self-testing of quantum devices and device-independent information processing Mar 2021 – Aug 2022
STARS, funded by IISc, India. Quantum information processing from distinguishability of physical processes June 2024 – June 2027 (on-going)

Publications (in reverse chronological order)

  1. D. Saha and A. Cabello,
    ‘Self-Testing Supersinglets with Perfect Quantum Strategies’,
    Phys. Rev. A 112, 012606 (2025).    arXiv:2501.00409
  2. S. Manna, S. Suresh, M. S. Kachhawaha, and D. Saha,
    Single-Shot Distinguishability and Antidistinguishability of Quantum Measurements’,
    Phys. Rev. A 111, 022221 (2025).    arXiv:2410.10632
  3. S. Manna, A. Chaturvedi, and D. Saha,
    Unbounded quantum advantage in communication complexity measured by distinguishability’,
    Phys. Rev. Research  6, 043269 (2024).   arXiv: 2401.12903
  4. P. P. Nath, D. Saha, D. Home, and U. Sinha,
    Single-system-based generation of certified randomness using Leggett-Garg inequality’,
    Phys. Rev. Lett. 133, 020802 (2024).   arXiv: 2402.03712 
  5. A. Mitra, D. Saha, S. Bhattacharya, and A. S. Majumdar,
    Relating Completely Positive divisibility of dynamical maps with compatibility of channels’,
    Phys. Rev. A 109, 062213 (2024).   arXiv: 2309.10806 
  6. Z.-P. Xu, D. Saha, K. Bharti, and A. Cabello,
    Certifying Sets of Quantum Observables with Any Full-Rank State’,
    Phys. Rev. Lett. 132, 140201 (2024).   arXiv: 2309.05735 
  7. R. Santos, D. Saha, F. Baccari, and R. Augusiak,
    Scalable Bell inequalities for graph states of arbitrary prime local dimension and self-testing’,
    New Journal of Physics 25, 063018 (2023).    arXiv:2212.07133
  8. D. Saha, D. Das, A. K. Das, B. Bhattacharya, and A. S. Majumdar,
    Measurement incompatibility and quantum advantage in communication’,
    Phys. Rev. A 107,  062210 (2023).   arXiv: 2209.14582 
  9. S. Sarkar, J. J. Borkala, C. Jebarathinam, O. Makuta, D. Saha, and R. Augusiak,
    Self-testing of any pure entangled state with minimal number of measurements and optimal randomness certification in one-sided device-independent scenario’,
    Phys. Rev. Applied 19,  034038 (2023)arXiv: 2110.15176 
  10. S. Sarkar and D. Saha,
    Demonstration of quantum correlations that are incompatible with absoluteness of measurement‘,
    Phys. Rev. A 107,  022226 (2023).   arXiv: 2107.08447 
  11. S. Gupta, D. Saha, Z-P Xu, A. Cabello, and A. S. Majumdar,
    Quantum contextuality provides communication complexity advantage‘,
    Phys. Rev. Lett. 130, 080802 (2023) arXiv: 2205.03308 
  12. S. Nandi, D. Saha, D. Home, and A. S. Majumdar,
    Wigner approach enabled detection of multipartite nonlocality using all different bipartitions‘,
    Phys. Rev. A 106,  062203 (2022).   arXiv: 2202.11475 
  13. S. Sarkar, D. Saha, and R. Augusiak,
    Certification of incompatible measurements using quantum steering‘,
    Phys. Rev. A (Letters) 106,  040402 (2022) arXiv: 2107.02937 
  14. D. Das, A. G. Maity, D. Saha, and A. S. Majumdar,
    Robust certification of arbitrary outcome quantum measurements from temporal correlations‘,
    Quantum 6, 716 (2022).   arXiv: 2110.01041 [quant-ph].
  15. K. Joarder, D. Saha, D. Home, and U. Sinha,
    Loophole free interferometric test of macrorealism using heralded single photons‘,
    PRX Quantum 3, 010307 (2022).   arXiv: 2105.11881   
  16. S. Sarkar, D. Saha, J. Kaniewski, and R. Augusiak,
    Self-testing quantum systems of arbitrary local dimension with minimal number of measurements‘,
    npj Quantum Information 7, 151 (2021).   arXiv:1909.12722 
  17. R. Salazar, M. Kamon, D. Goyeneche, K. Horodecki, D. Saha, R. Ramanathan, P. Horodecki,
    No-go theorem for device-independent security in relativistic causal theories‘,
    Phys. Rev. Research 3, 033146 (2021).   arXiv:1712.01030 
  18. C. Datta, T. Biswas, D. Saha, and R. Augusiak,
    Perfect discrimination of quantum measurements using entangled systems‘,
    New Journal of Physics 23, 043021 (2021).   arXiv:2012.07069 
  19. A. Chaturvedi, and D. Saha,
    Quantum prescriptions are more ontologically distinct than they are operationally distinguishable‘,
    Quantum 4, 345 (2020) arXiv:1909.07293 
  20.  A. Hameedi, B. Marques, P. Mironowicz, D. Saha, M. Pawlowski, and M. Bourennane,
    Experimental test of nonclassicality with arbitrarily low detection efficiency‘,

    Phys. Rev. A 102, 032621 (2020).    arXiv:1511.06179 
  21. D. Saha, R. Santos, and R. Augusiak,
    Sum-of-squares decompositions for a family of noncontextuality inequalities and self-testing of quantum devices‘,

    Quantum 4, 302 (2020)
    .    arXiv:2002.12216
  22. D. Saha, M. Oszmaniec, L. Czekaj, M. Horodecki, and R. Horodecki,
    Operational foundations for complementarity and uncertainty relations‘,
    Phys. Rev. A 101, 052104 (2020).   
    arXiv:1809.03475
  23. D. Saha, and J. J. Borkala,
    Multiparty quantum random access codes‘,
    Europhysics Letters 128, 30005 (2020).   
    arXiv:1905.05668 
  24. D. Saha, P. Horodecki, and M. Pawlowski,
    State-independent contextuality advances one-way communication’,
    New Journal of Physics 21, 093057 (2019).   arXiv:1708.04751 
  25. D. Saha, and A. Chaturvedi,
    Preparation contextuality as an essential feature underlying quantum communication advantage’,
    Phys. Rev. A 100, 022108 (2019).   
    arXiv:1802.07215
  26. M. Czechlewski, D. Saha, A. Tavakoli, and M. Pawlowski,
    Device-independent witness of arbitrary-dimensional quantum systems employing binary-outcome measurements‘,
    Phys. Rev. A 98, 062305 (2018).   
    arXiv:1803.05245 
  27. A. Hameedi, D. Saha, P. Mironowicz, M. Pawlowski, and M. Bourennane,
    Complementarity between entanglement-assisted and quantum distributed random access code‘,
    Phys. Rev. A 95, 052345 (2017).    arXiv:1701.08713
  28. D. Saha, and R. Ramanathan,
    Activation of monogamy in non-locality using local contextuality‘,
    Phys. Rev. A (R) 95, 030104 (2017).    arXiv:1606.04021 
  29. Z.P. Xu, D. Saha, H.Y. Su, M. Pawłowski, and J.L. Chen,
    Reformulating Noncontextuality Inequalities in an Operational Approach‘,
    Phys. Rev. A 94, 062103 (2016).   arXiv:1509.06027 
  30. D. Saha, A. Cabello, S. K. Choudhary, and M. Pawlowski,
    Quantum nonlocality via local contextuality with qubit-qubit entanglement‘,
    Phys. Rev. A 93, 042123 (2016).   arXiv:1507.08480
  31. D. Saha, and M. Pawlowski,
    Structure of quantum and broadcasting nonlocal correlations’,
    Phys. Rev. A 92, 062129 (2015).   arXiv:1504.05019 
  32. D. Saha, S. Mal, P. K. Panigrahi, and D. Home,
    Wigner’s form of the Leggett-Garg inequality, No-Signalling in Time and Unsharp Measurement‘,
    Phys. Rev. A 91, 032117 (2015).    arXiv:1409.1132 
  33. D. Home, D. Saha, and S. Das,
    Multipartite Quantum Nonlocality by Generalizing Wigner’s Argument‘,
    Phys. Rev. A 91, 012102 (2015).   arXiv:1410.7936 
  34. N. Vyas, D. Saha, and P. K. Panigrahi,
    Rooted-tree network for optimal non-local gate implementation‘,
    Quant. Inf. Proc. 15, 3855 (2016).      arXiv:1506.08411 
  35. D. Saha, S. Nandan and P. K. Panigrahi,
    Local implementations of non-local quantum gates in linear entangled channel‘,
    J. Quant. Info. Sci. 4, p 97-103 (2014).    arXiv:1206.6323  
  36. D. Saha, and P. K. Panigrahi,
    N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel‘,
    Quant. Inf. Proc. 11, p 615-628 (2012).   arXiv:1105.4160 

Preprints (under communication)

  1. S. Ray, A. Chaturvedi, and D. Saha.
    Maximally ψ-epistemic models cannot explain gambling with two qubits.
    arXiv:2509.10437 [quant-ph].
    https://arxiv.org/abs/2509.10437
  2. S. Manna, S. Suresh, A. D. Bhowmik, and D. Saha.
    Global vs. Local Discrimination of Locally Implementable Multipartite Unitaries.
    arXiv:2509.10430 [quant-ph].
    https://arxiv.org/abs/2509.10430
  3. B. Bhaumik, S. Ray, D. Saha.
    Communication scenario enables robust self-testing of n-party Greenberger-Horne-Zeilinger basis measurements.
    arXiv:2508.21178 [quant-ph].
    https://arxiv.org/abs/2508.21178
  4. A. Pandit, S. Hazra, S. Manna, A. Chaturvedi, and D. Saha.
    Limits of Classical correlations and Quantum advantages under (Anti-)Distinguishability constraints in Multipartite Communication.
    arXiv:2506.07699 [quant-ph].
    https://arxiv.org/abs/2506.07699
  5. S. Manna, A. D. Bhowmik, and D. Saha.
    Maximally entangled states are not always useful for single-shot distinguishability of unitaries.
    arXiv:2504.14499 [quant-ph].
    https://arxiv.org/abs/2504.14499
  6. S. Hazra, D. Saha, A. Chaturvedi, S. Bera, and A. S. Majumdar.
    Optimal demonstration of generalized quantum contextuality.
    arXiv:2406.09111 [quant-ph].
    https://arxiv.org/abs/2406.09111
  7. S. Ray, V R, and D. Saha,
    No epistemic model can explain anti-distinguishability of quantum mixed preparations.
    arXiv:2401.17980 [quant-ph].
    https://arxiv.org/abs/2401.17980
  8. A. K. Sunilkumar, A. Shaji, and D. Saha,
    Learning non-ideal genuine network nonlocality using causally inferred Bayesian neural network algorithms.
    arXiv:2501.08079 [quant-ph].
    https://arxiv.org/abs/2501.08079

 

In the Media

On the Research article ‘Single-system-based generation of certified randomness using Leggett-Garg inequality’, Phys. Rev. Lett. 133, 020802 (2024)

 

On the Research article ‘‘Quantum contextuality provides communication complexity advantage’, Phys. Rev. Lett. 130, 080802 (2023).

 

On the Research article ‘Loophole free interferometric test of macrorealism using heralded single photons’, PRX Quantum 3, 010307 (2022).

Scroll to Top
Skip to content